
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321826626
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321826626
https://plusone.google.com/share?url=http://www.informit.com/title/9780321826626
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321826626
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321826626/Free-Sample-Chapter

NoSQL Distilled

This page intentionally left blank

NoSQL Distilled

A Brief Guide to the Emerging
World of Polyglot Persistence

Pramod J. Sadalage
Martin Fowler

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Sadalage, Pramod J.
 NoSQL distilled : a brief guide to the emerging world of polyglot
persistence / Pramod J Sadalage, Martin Fowler.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-82662-6 (pbk. : alk. paper) -- ISBN 0-321-82662-0 (pbk. :
alk. paper) 1. Databases--Technological innovations. 2. Information
storage and retrieval systems. I. Fowler, Martin, 1963- II. Title.
 QA76.9.D32S228 2013
 005.74--dc23

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236–3290.

ISBN-13: 978-0-321-82662-6
ISBN-10: 0-321-82662-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Fourth printing, November 2014

For my teachers Gajanan Chinchwadkar,
Dattatraya Mhaskar, and Arvind Parchure. You

inspired me the most, thank you.

—Pramod

For Cindy

—Martin

This page intentionally left blank

xiiiPreface ..

1Part I: Understand ..

3Chapter 1: Why NoSQL? ...
31.1 The Value of Relational Databases ..
31.1.1 Getting at Persistent Data ..
41.1.2 Concurrency ..
41.1.3 Integration ...
41.1.4 A (Mostly) Standard Model ..
51.2 Impedance Mismatch ..
61.3 Application and Integration Databases
81.4 Attack of the Clusters ..
91.5 The Emergence of NoSQL ...

121.6 Key Points ..

13

283.3 Schemaless Databases ..
303.4 Materialized Views ..
313.5 Modeling for Data Access ..
363.6 Key Points ..

37Chapter 4: Distribution Models ...
374.1 Single Server ..
384.2 Sharding ..
404.3 Master-Slave Replication ...
424.4 Peer-to-Peer Replication ...
434.5 Combining Sharding and Replication
444.6 Key Points ..

47Chapter 5: Consistency ..
475.1 Update Consistency ...
495.2 Read Consistency ...
525.3 Relaxing Consistency ...
535.3.1 The CAP Theorem ..
565.4 Relaxing Durability ...
575.5 Quorums ...
595.6 Further Reading ...
595.7 Key Points ..

61Chapter 6: Version Stamps ...
616.1 Business and System Transactions ..
636.2 Version Stamps on Multiple Nodes ..
656.3 Key Points ..

67Chapter 7: Map-Reduce ...
687.1 Basic Map-Reduce ...
697.2 Partitioning and Combining ...
727.3 Composing Map-Reduce Calculations
737.3.1 A Two Stage Map-Reduce Example
767.3.2 Incremental Map-Reduce ...
777.4 Further Reading ...
777.5 Key Points ..

79Part II: Implement ..

81Chapter 8: Key-Value Databases ..
818.1 What Is a Key-Value Store ...
838.2 Key-Value Store Features ...

Contentsviii

838.2.1 Consistency ...
848.2.2 Transactions ..
848.2.3 Query Features ...
868.2.4 Structure of Data ..
868.2.5 Scaling ..
878.3 Suitable Use Cases ...
878.3.1 Storing Session Information ...
878.3.2 User Profiles, Preferences ...
878.3.3 Shopping Cart Data ..
878.4 When Not to Use ...
878.4.1 Relationships among Data ...
888.4.2 Multioperation Transactions ..
888.4.3 Query by Data ...
888.4.4 Operations by Sets ..

89Chapter 9: Document Databases ..
909.1 What Is a Document Database? ...
919.2 Features ...
919.2.1 Consistency ...
929.2.2 Transactions ..
939.2.3 Availability ..
949.2.4 Query Features ...
959.2.5 Scaling ..
979.3 Suitable Use Cases ...
979.3.1 Event Logging ..
989.3.2 Content Management Systems, Blogging Platforms
989.3.3 Web Analytics or Real-Time Analytics
989.3.4 E-Commerce Applications ...
989.4 When Not to Use ...
989.4.1 Complex Transactions Spanning Different Operations
989.4.2 Queries against Varying Aggregate Structure

99Chapter 10: Column-Family Stores ..
9910.1 What Is a Column-Family Data Store?

10010.2 Features ...
10310.2.1 Consistency ..
10410.2.2 Transactions ..
10410.2.3 Availability ..

ixContents

10510.2.4 Query Features ...
10710.2.5 Scaling ..
10710.3 Suitable Use Cases ..
10710.3.1 Event Logging ..
10810.3.2 Content Management Systems, Blogging Platforms
10810.3.3 Counters ..
10810.3.4 Expiring Usage ...
10910.4 When Not to Use ...

111Chapter 11: Graph Databases ...
11111.1 What Is a Graph Database? ...
11311.2 Features ...
11411.2.1 Consistency ..
11411.2.2 Transactions ..
11511.2.3 Availability ..
11511.2.4 Query Features ...
11911.2.5 Scaling ..
12011.3 Suitable Use Cases ..
12011.3.1 Connected Data ..
12011.3.2 Routing, Dispatch, and Location-Based Services
12111.3.3 Recommendation Engines ..
12111.4 When Not to Use ...

123Chapter 12: Schema Migrations ...
12312.1 Schema Changes ..
12312.2 Schema Changes in RDBMS ..
12412.2.1 Migrations for Green Field Projects
12612.2.2 Migrations in Legacy Projects ...
12812.3 Schema Changes in a NoSQL Data Store
13012.3.1 Incremental Migration ...
13112.3.2 Migrations in Graph Databases ..
13212.3.3 Changing Aggregate Structure ..
13212.4 Further Reading ...
13212.5 Key Points ..

133Chapter 13: Polyglot Persistence ...
13313.1 Disparate Data Storage Needs ..
13413.2 Polyglot Data Store Usage ..
13613.3 Service Usage over Direct Data Store Usage

Contentsx

13613.4 Expanding for Better Functionality
13813.5 Choosing the Right Technology ...
13813.6 Enterprise Concerns with Polyglot Persistence
13913.7 Deployment Complexity ..
14013.8 Key Points ..

141Chapter 14: Beyond NoSQL ..
14114.1 File Systems ..
14214.2 Event Sourcing ...
14414.3 Memory Image ...
14514.4 Version Control ...
14514.5 XML Databases ...
14614.6 Object Databases ...
14614.7 Key Points ..

147Chapter 15: Choosing Your Database ..
14715.1 Programmer Productivity ...
14915.2 Data-Access Performance ...
15015.3 Sticking with the Default ..
15015.4 Hedging Your Bets ...
15115.5 Key Points ..
15215.6 Final Thoughts ...

153Bibliography ...

157Index ..

xiContents

This page intentionally left blank

Had we not thought that, we wouldn’t have spent the time and effort writing
this book.

This book seeks to give you enough information to answer the question of
whether NoSQL databases are worth serious consideration for your future
projects. Every project is different, and there’s no way we can write a simple de-
cision tree to choose the right data store. Instead, what we are attempting here
is to provide you with enough background on how NoSQL databases work, so
that you can make those judgments yourself without having to trawl the whole
web. We’ve deliberately made this a small book, so you can get this overview
pretty quickly. It won’t answer your questions definitively, but it should
narrow down the range of options you have to consider and help you understand
what questions you need to ask.

Why Are NoSQL Databases Interesting?

We see two primary reasons why people consider using a NoSQL database.

• Application development productivity. A lot of application development
effort is spent on mapping data between in-memory data structures and a
relational database. A NoSQL database may provide a data model that
better fits the application’s needs, thus simplifying that interaction and
resulting in less code to write, debug, and evolve.

• Large-scale data. Organizations are finding it valuable to capture more
data and process it more quickly. They are finding it expensive, if even
possible, to do so with relational databases. The primary reason is that a
relational database is designed to run on a single machine, but it is usually
more economic to run large data and computing loads on clusters of
many smaller and cheaper machines. Many NoSQL databases are designed
explicitly to run on clusters, so they make a better fit for big data scenarios.

What’s in the Book

We’ve broken this book up into two parts. The first part concentrates on core
concepts that we think you need to know in order to judge whether NoSQL
databases are relevant for you and how they differ. In the second part we
concentrate more on implementing systems with NoSQL databases.

xiv Preface

Chapter 1 begins by explaining why NoSQL has had such a rapid rise—the
need to process larger data volumes led to a shift, in large systems, from scaling
vertically to scaling horizontally on clusters. This explains an important feature
of the data model of many NoSQL databases—the explicit storage of a rich
structure of closely related data that is accessed as a unit. In this book we call
this kind of structure an aggregate.

Chapter 2 describes how aggregates manifest themselves in three of the main
data models in NoSQL land: key-value (“Key-Value and Document Data Models,”
p. 20), document (“Key-Value and Document Data Models,” p. 20), and column
family (“Column-Family Stores,” p. 21) databases. Aggregates provide a natural
unit of interaction for many kinds of applications, which both improves running
on a cluster and makes it easier to program the data access. Chapter 3 shifts to
the downside of aggregates—the difficulty of handling relationships
(“Relationships,” p. 25) between entities in different aggregates. This leads us
naturally to graph databases (“Graph Databases,” p. 26), a NoSQL data model
that doesn’t fit into the aggregate-oriented camp. We also look at the common
characteristic of NoSQL databases that operate without a schema (“Schemaless
Databases,” p. 28)—a feature that provides some greater flexibility, but not as
much as you might first think.

Having covered the data-modeling aspect of NoSQL, we move on to distribu-
tion: Chapter 4 describes how databases distribute data to run on clusters.
This breaks down into sharding (“Sharding,” p. 38) and replication, the latter
being either master-slave (“Master-Slave Replication,” p. 40) or peer-to-peer
(“Peer-to-Peer Replication,” p. 42) replication. With the distribution models

Who Should Read This Book

Our target audience for this book is people who are considering using some form
of a NoSQL database. This may be for a new project, or because they are hitting
barriers that are suggesting a shift on an existing project.

Our aim is to give you enough information to know whether NoSQL technol-
ogy makes sense for your needs, and if so which tool to explore in more depth.
Our primary imagined audience is an architect or technical lead, but we think
this book is also valuable for people involved in software management who want
to get an overview of this new technology. We also think that if you’re a devel-
oper who wants an overview of this technology, this book will be a good starting
point.

We don’t go into the details of programming and deploying specific databases
here—we leave that for specialist books. We’ve also been very firm on a page
limit, to keep this book a brief introduction. This is the kind of book we think
you should be able to read on a plane flight: It won’t answer all your questions
but should give you a good set of questions to ask.

If you’ve already delved into the world of NoSQL, this book probably won’t
commit any new items to your store of knowledge. However, it may still be
useful by helping you explain what you’ve learned to others. Making sense of
the issues around NoSQL is important—particularly if you’re trying to persuade
someone to consider using NoSQL in a project.

What Are the Databases

In this book, we’ve followed a common approach of categorizing NoSQL
databases according to their data model. Here is a table of the four data models
and some of the databases that fit each model. This is not a comprehensive list—it
only mentions the more common databases we’ve come across. At the time of
writing, you can find more comprehensive lists at http://nosql-database.org and
http://nosql.mypopescu.com/kb/nosql. For each category, we mark with italics
the database we use as an example in the relevant chapter.

Our goal is to pick a representative tool from each of the categories of the
databases. While we talk about specific examples, most of the discussion should
apply to the entire category, even though these products are unique and cannot
be generalized as such. We will pick one database for each of the key-value,
document, column family, and graph databases; where appropriate, we will
mention other products that may fulfill a specific feature need.

xviiPreface

http://nosql-database.org
http://nosql.mypopescu.com/kb/nosql

Example DatabasesData Model

BerkeleyDBKey-Value (“Key-Value Databases,” p. 81)

LevelDB

Memcached

Project Voldemort

Redis

Riak

CouchDBDocument (“Document Databases,” p. 89)

MongoDB

OrientDB

RavenDB

Terrastore

Amazon SimpleDBColumn-Family (“Column-Family Stores,” p. 99)

Cassandra

HBase

Hypertable

FlockDBGraph (“Graph Databases,” p. 111)

HyperGraphDB

Infinite Graph

Neo4J

OrientDB

This classification by data model is useful, but crude. The lines between the
different data models, such as the distinction between key-value and document
databases (“Key-Value and Document Data Models,” p. 20), are often blurry.
Many databases don’t fit cleanly into categories; for example, OrientDB calls itself
both a document database and a graph database.

Acknowledgments

Our first thanks go to our colleagues at ThoughtWorks, many of whom have
been applying NoSQL to our delivery projects over the last couple of years. Their
experiences have been a primary source both of our motivation in writing this
book and of practical information on the value of this technology. The positive

xviii Preface

This page intentionally left blank

Different databases are designed to solve different problems. Using a single
database engine for all of the requirements usually leads to non- performant so-
lutions; storing transactional data, caching session information, traversing graph
of customers and the products their friends bought are essentially different
problems. Even in the RDBMS space, the requirements of an OLAP and OLTP
system are very different—nonetheless, they are often forced into the same schema.

Let’s think of data relationships. RDBMS solutions are good at enforcing that
relationships exist. If we want to discover relationships, or have to find data from
different tables that belong to the same object, then the use of RDBMS starts
being difficult.

Database engines are designed to perform certain operations on certain data
structures and data amounts very well—such as operating on sets of data or
a store and retrieving keys and their values really fast, or storing rich documents
or complex graphs of information.

13.1 Disparate Data Storage Needs

Many enterprises tend to use the same database engine to store business
transactions, session management data, and for other storage needs such as
reporting, BI, data warehousing, or logging information (Figure 13.1).

The session, shopping cart, or order data do not need the same properties of
availability, consistency, or backup requirements. Does session management
storage need the same rigorous backup/recovery strategy as the e-commerce orders
data? Does the session management storage need more availability of an instance
of database engine to write/read session data?

In 2006, Neal Ford coined the term polyglot programming, to express the idea
that applications should be written in a mix of languages to take advantage

133

Chapter 13

Polyglot Persistence

RDBMS

e-commerce platform

Shopping
cart data

Completed
orders

Session
data BI/DW

Figure 13.1 Use of RDBMS for every aspect of storage for the application

of the fact that different languages are suitable for tackling different problems.
Complex applications combine different types of problems, so picking the right
language for each job may be more productive than trying to fit all aspects into
a single language.

Similarly, when working on an e-commerce business problem, using a data
store for the shopping cart which is highly available and can scale is important,
but the same data store cannot help you find products bought by the customers’
friends—which is a totally different question. We use the term polyglot persistence
to define this hybrid approach to persistence.

13.2 Polyglot Data Store Usage

Let’s take our e-commerce example and use the polyglot persistence approach
to see how some of these data stores can be applied (Figure 13.2). A key-value
data store could be used to store the shopping cart data before the order is
confirmed by the customer and also store the session data so that the RDBMS
is not used for this transient data. Key-value stores make sense here since the
shopping cart is usually accessed by user ID and, once confirmed and paid by
the customer, can be saved in the RDBMS. Similarly, session data is keyed
by the session ID.

If we need to recommend products to customers when they place products into

RDBMS

e-commerce
platform

Key-Value
store Key-Value

store

Shopping
cart data

Completed
Orders

Session
data

Figure 13.2 Use of key-value stores to offload session and shopping cart data storage

Document
store

e-commerce
platform

Key-Value
store

RDBMS
(Legacy DB)

Graph store

Shopping cart
and session

data

Completed
Orders

Inventory
and

Item Price

Customer
social
graph

Figure 13.3 Example implementation of polyglot persistence

or “your friends bought these accessories for this product”—then introducing a
graph data store in the mix becomes relevant (Figure 13.3).

It is not necessary for the application to use a single data store for all of its
needs, since different databases are built for different purposes and not all
problems can be elegantly solved by a singe database.

Even using specialized relational databases for different purposes, such as data
warehousing appliances or analytics appliances within the same application, can
be viewed as polyglot persistence.

13.2 Polyglot Data Store Usage 135

13.3 Service Usage over Direct Data Store Usage

As we move towards multiple data stores in the application, there may be other
applications in the enterprise that could benefit from the use of our data stores
or the data stored in them. Using our example, the graph data store can serve
data to other applications that need to understand, for example, which products
are being bought by a certain segment of the customer base.

Instead of each application talking independently to the graph database, we
can wrap the graph database into a service so that all relationships between the
nodes can be saved in one place and queried by all the applications (Figure 13.4).
The data ownership and the APIs provided by the service are more useful than
a single application talking to multiple databases.

Friends bought
these products

service

Document
store

e-commerce platform

Key-Value
store

RDBMS
(Legacy DB) Graph store

Shopping cart
and session

data

Completed
Orders

Inventory
and

Item Price

Customer
social
graph

Figure 13.4 Example implementation of wrapping data stores into services

The philosophy of service wrapping can be taken further: You could wrap all
databases into services, letting the application to only talk to a bunch of services
(Figure 13.5). This allows for the databases inside the services to evolve without
you having to change the dependent applications.

Many NoSQL data store products, such as Riak [Riak] and Neo4J [Neo4J],
actually provide out-of-the-box REST API’s.

13.4 Expanding for Better Functionality

Often, we cannot really change the data storage for a specific usage to something
different, because of the existing legacy applications and their dependency on

Chapter 13 Polyglot Persistence136

Order persistence
service

Document
store

e-commerce platform

Session storage
service

Key-Value
store

Inventory and
Price service

RDBMS
(Legacy DB)

Nodes and
Relations service

Graph store

Shopping cart
and session

data

Completed
Orders

Inventory
and

Item Price Customer
social graph

Figure 13.5 Using services instead of talking to databases

existing data storage. We can, however, add functionality such as caching for
better performance, or use indexing engines such as Solr [Solr] so that search
can be more efficient (Figure 13.6). When technologies like this are introduced,
we have to make sure data is synchronized between the data storage for the
application and the cache or indexing engine.

RDBMS

e-commerce
platform

Shopping
cart data

Completed
Orders

Session
data

SOLR

While doing this, we need to update the indexed data as the data in the appli-
cation database changes. The process of updating the data can be real-time or
batch, as long as we ensure that the application can deal with stale data in the

13.8 Key Points

• Polyglot persistence is about using different data storage technologies to
handle varying data storage needs.

• Polyglot persistence can apply across an enterprise or within a single
application.

• Encapsulating data access into services reduces the impact of data storage
choices on other parts of a system.

• Adding more data storage technologies increases complexity in programming
and operations, so the advantages of a good data storage fit need to be
weighed against this complexity.

Chapter 13 Polyglot Persistence140

This page intentionally left blank

A
ACID (Atomic, Consistent, Isolated, and

Durable) transactions, 19
in column-family databases, 109
in graph databases, 28, 50, 114–115
in relational databases, 10, 26
vs. BASE, 56

ad banners, 108–109
aggregate-oriented databases, 14, 19–23,

147
atomic updates in, 50, 61
disadvantages of, 30
no ACID transactions in, 50
performance of, 149
vs. graph databases, 28

aggregates, 14–23
changing structure of, 98, 132
modeling, 31
real-time analytics with, 33
updating, 26

agile methods, 123
Amazon, 9

See also DynamoDB, SimpleDB
analytics

counting website visitors for, 108
of historic information, 144
real-time, 33, 98

Apache Pig language, 76
Apache ZooKeeper library, 104, 115
application databases, 7, 146

updating materialized views in, 31
arcs (graph databases). See edges
atomic cross-document operations, 98
atomic rebalancing, 58
atomic transactions, 92, 104

atomic updates, 50, 61
automated failovers, 94
automated merges, 48
automated rollbacks, 145
auto-sharding, 39
availability, 53

in column-family databases, 104–105
in document databases, 93
in graph databases, 115
vs. consistency, 54
See also CAP theorem

auto,igTitl6 Simp9

CAP (Consistency, Availability, and Partition
tolerance) theorem, 53–56

for document databases, 93
for Riak, 86

CAS (compare-and-set) operations, 62
Cassandra DB, 10, 21–22, 99–109

availability in, 104–105
column families in:

commands for, 105–106
standard, 101
super, 101–102

columns in, 100
expiring, 108–109
indexing, 106–107
reading, 107
super, 101

compaction in, 103
consistency in, 103–104
ETL tools for, 139
hinted handoff in, 104
keyspaces in, 102–104
memtables in, 103
queries in, 105–107
repairs in, 103–104
replication factor in, 103
scaling in, 107
SSTables in, 103
timestamps in, 100
transactions in, 104
wide/skinny rows in, 23

clients, processing on, 67
Clojure language, 145
cloud computing, 149
clumping, 39
clusters, 8–10, 67–72, 76, 149

in file systems, 8
in Riak, 87
resiliency of, 8

column-family databases, 21–23, 99–109
ACID transactions in, 109
columns for materialized views in, 31
combining peer-to-peer replication and

sharding in, 43–44
consistency in, 103–104
modeling for, 34
performance in, 103
schemalessness of, 28
vs. key-value databases, 21
wide/skinny rows in, 23

combinable reducers, 70–71

compaction (Cassandra), 103
compatibility, backward, 126, 131
concurrency, 145

in file systems, 141
in relational databases, 4
offline, 62

conditional updates, 48, 62–63
conflicts

key, 82
read-write, 49–50
resolving, 64
write-write, 47–48, 64

consistency, 47–59
eventual, 50, 84
in column-family databases, 103–104
in graph databases, 114
in master-slave replication, 52
in MongoDB, 91
logical, 50
optimistic/pessimistic, 48
read, 49–52, 56
read-your-writes, 52
relaxing, 52–56
replication, 50
session, 52, 63
trading off, 57
update, 47, 56, 61
vs. availability, 54
write, 92
See also CAP theorem

content hashes, 62–63
content management systems, 98, 108
CouchDB, 10, 91

conditional updates in, 63
replica sets in, 94

counters, for version stamps, 62–63
CQL (Cassandra Query Language), 10, 106
CQRS (Command Query Responsibility

Segregation), 143
cross-document operations, 98
C-Store DB, 21
Cypher language, 115–119

D
Data Mapper and Repository pattern, 151
data models, 13, 25

aggregate-oriented, 14–23, 30
document, 20
key-value, 20
relational, 13–14

Index158

data redundancy, 94
databases

choosing, 7, 147–152
deploying, 139
encapsulating in explicit layer, 151
NoSQL, definition of, 10–11
shared integration of, 4, 6

Datastax Ops Center, 139
DBDeploy framework, 125
DBMaintain tool, 126
deadlocks, 48
demo access, 108
Dependency Network pattern, 77
deployment complexity, 139
Dijkstra’s algorithm, 118
disaster recovery, 94
distributed file systems, 76, 141
distributed version control systems, 48

version stamps in, 64
distribution models, 37–43

See also replications, sharding, single
server approach

document databases, 20, 23, 89–98
availability in, 93
embedding child documents into, 90
indexes in, 25
master-slave replication in, 93
performance in, 91
queries in, 25, 94–95
replica sets in, 94
scaling in, 95
schemalessness of, 28, 98
XML support in, 146

domain buckets (Riak), 83
Domain-Driven Design, 14
DTDs (Document Type Definitions), 146
durability, 56–57
DynamoDB, 9, 81, 100

shopping carts in, 55
Dynomite DB, 10

E
early prototypes, 109
e-commerce

data modeling for, 14
flexible schemas for, 98
polyglot persistence of, 133–138
shopping carts in, 55, 85, 87

edges (graph databases), 26, 111
eligibility rules, 26

enterprises
commercial support of NoSQL for,

138–139
concurrency in, 4
DB as backing store for, 4
event logging in, 97
integration in, 4
polyglot persistence in, 138–139
security of data in, 139

error handling, 4, 145
etags, 62
ETL tools, 139
Evans, Eric, 10
event logging, 97, 107–108
event sourcing, 138, 142, 144
eventual consistency, 50

in Riak, 84
expiring usage, 108–109

F
failovers, automated, 94
file systems, 141

as backing store for RDBMS, 3
cluster-aware, 8
concurrency in, 141
distributed, 76, 141
performance of, 141
queries in, 141

FlockDB, 113
data model of, 27
node distribution in, 115

G
Gilbert, Seth, 53
Google, 9

Google BigTable. See BigTable
Google File System, 141

graph databases, 26–28, 111–121, 148
ACID transactions in, 28, 50, 114–115
aggregate-ignorance of, 19
availability in, 115
consistency in, 114
creating, 113
edges (arcs) in, 26, 111
held entirely in memory, 119
master-slave replication in, 115
migrations in, 131
modeling for, 35
nodes in, 26, 111–117
performance of, 149

159Index

graph databases (continued)
properties in, 111
queries in, 115–119
relationships in, 111–121
scaling in, 119
schemalessness of, 28
single server configuration of, 38
traversing, 111–117
vs. aggregate databases, 28
vs. relational databases, 27, 112
wrapping into service, 136

Gremlin language, 115
GUID (Globally Unique Identifier), 62

H
Hadoop project, 67, 76, 141
HamsterDB, 81
hash tables, 62–63, 81
HBase DB, 10, 21–22, 99–100
Hector client, 105
Hibernate framework, 5, 147
hinted handoff, 104
hive DB, 76
hot backup, 40, 42
hotel booking, 4, 55
HTTP (Hypertext Transfer Protocol), 7

interfaces based on, 85
updating with, 62

Hypertable DB, 10, 99–100

I
iBATIS, 5, 147
impedance mismatch, 5, 12
inconsistency

in shopping carts, 55
of reads, 49
of updates, 56
window of, 50–51, 56

indexes
bit-mapped, 106
in document databases, 25
stale data in, 138
updating, 138

Infinite Graph DB, 113
data model of, 27
node distribution in, 114–115

initial tech spikes, 109
integration databases, 6, 11
interoperability, 7

J
JSON (JavaScript Object Notation), 7,

94–95, 146

K
keys (key-value databases)

composite, 74
conflicts of, 82
designing, 85
expiring, 85
grouping into partitions, 70

keyspaces (Cassandra), 102–104
key-value databases, 20, 23, 81–88

consistency of, 83–84
modeling for, 31–33
no multiple key operations in, 88
schemalessness of, 28
sharding in, 86
structure of values in, 86
transactions in, 84, 88
vs. column-family databases, 21
XML support in, 146

L
Liquibase tool, 126
location-based services, 120
locks

dead, 48
offline, 52

lost updates, 47
Lotus DB, 91
Lucene library, 85, 88, 116
Lynch, Nancy, 53

M
MapReduce framework, 67
map-reduce pattern, 67–77

calculations with, 72
incremental, 31, 76–77
maps in, 68
materialized views in, 76
partitions in, 70
reusing intermediate outputs in, 76
stages for, 73–76

master-slave replication, 40–42
appointing masters in, 41, 57
combining with sharding, 43
consistency of, 52
in document databases, 93

Index160

in graph databases, 115
version stamps in, 63

materialized views, 30
in map-reduce, 76
updating, 31

Memcached DB, 81, 87
memory images, 144–145
memtables (Cassandra), 103
merges, automated, 48
migrations, 123–132

during development, 124, 126
in graph databases, 131
in legacy projects, 126–128
in object-oriented databases, 146
in schemaless databases, 128–132
incremental, 130
transition phase of, 126–128

mobile apps, 131
MongoDB, 10, 91–97

collections in, 91
consistency in, 91
databases in, 91
ETL tools for, 139
queries in, 94–95
replica sets in, 91, 93, 96
schema migrations in, 128–131
sharding in, 96
slaveOk parameter in, 91–92, 96
terminology in, 89
WriteConcern parameter in, 92

MongoDB Monitoring Service, 139
MyBatis Migrator tool, 126
MySQL DB, 53, 119

N
Neo4J DB, 113–118

ACID transactions in, 114–115
availability in, 115
creating graphs in, 113
data model of, 27
replicated slaves in, 115
service wrapping in, 136

nodes (graph databases), 26, 111
distributed storage for, 114
finding paths between, 117
indexing properties of, 115–116

nonuniform data, 10, 28, 30
NoSQL databases

advantages of, 12
definition of, 10–11

lack of support for transactions in,
10, 61

running of clusters, 10
schemalessness of, 10

O
object-oriented databases, 5, 146

migrations in, 146
vs. relational databases, 6

offline concurrency, 62
offline locks, 52
Optimistic Offline Lock, 62
Oracle DB

redo log in, 104
terminology in, 81, 89

Oracle RAC Server, 8
OrientDB, 91, 113
ORM (Object-Relational Mapping)

frameworks, 5–6, 147
Oskarsson, Johan, 9

P
partition tolerance, 53–54

See also CAP theorem
partitioning, 69–70
peer-to-peer replication, 42–43

durability of, 58
inconsistency of, 43
version stamps in, 63–64

Pentaho tool, 139
performance

and sharding, 39
and transactions, 53
binary protocols for, 7
caching for, 39, 137
data-access, 149–150
in aggregate-oriented databases, 149
in column-family databases, 103
in document databases, 91
in graph databases, 149
responsiveness of, 48
tests for, 149

pipes-and-filters approach, 73
polyglot persistence, 11, 133–139, 148

and deployment complexity, 139
in enterprises, 138–139

polyglot programming, 133–134
processing, on clients/servers, 67
programmer productivity, 147–149
purchase orders, 25

161Index

Q
queries

against varying aggregate structure, 98
by data, 88, 94
by key, 84–86
for files, 141
in column-family databases, 105–107
in document databases, 25, 94–95
in graph databases, 115–119
precomputed and cached, 31
via views, 94

quorums, 57, 59
read, 58
write, 58, 84

R
Rails Active Record framework, 147
RavenDB, 91

atomic cross-document operations in, 98
replica sets in, 94
transactions in, 92

RDBMS. See relational databases
reads

consistency of, 49–52, 56, 58
horizontal scaling for, 94, 96
inconsistent, 49
multiple nodes for, 143
performance of, 52
quorums of, 58
repairs of, 103
resilience of, 40–41
separating from writes, 41
stale, 56

read-write conflicts, 49–50
read-your-writes consistency, 52
Real Time Analytics, 33
Real Time BI, 33
rebalancing, atomic, 58
recommendation engines, 26, 35, 121, 138
Redis DB, 81–83
redo log, 104
reduce functions, 69

combinable, 70–71
regions. See map-reduce pattern, partitions

in
Rekon browser for Riak, 139
relational databases (RDBMS), 13, 17

advantages of, 3–5, 7–8, 150
aggregate-ignorance of, 19
backing store in, 3
clustered, 8

columns in, 13, 90
concurrency in, 4
defining schemas for, 28
impedance mismatch in, 5, 12
licensing costs of, 8
main memory in, 3
modifying multiple records at once in, 26
partitions in, 96
persistence in, 3
relations (tables) in, 5, 13
schemas for, 29–30, 123–128
security in, 7
sharding in, 8
simplicity of relationships in, 112
strong consistency of, 47
terminology in, 81, 89
transactions in, 4, 26, 92
tuples (rows) in, 5, 13–14
views in, 30
vs. graph databases, 27, 112
vs. object-oriented databases, 6
XML support in, 146

relationships, 25, 111–121
dangling, 114
direction of, 113, 116, 118
in RDBMS, 112
properties of, 113–115
traversing, 111–117

RelaxNG, 146
replica sets, 91, 93, 96
replication factor, 58

in column-family databases, 103
in Riak, 84

replications, 37
combining with sharding, 43
consistency of, 42, 50
durability of, 57
over clusters, 149
performance of, 39
version stamps in, 63–64
See also master-slave replication,

peer-to-peer replication
resilience

and sharding, 39
read, 40–41

responsiveness, 48
Riak DB, 81–83

clusters in, 87
controlling CAP in, 86
eventual consistency in, 84
HTTP-based interface of, 85

Index162

link-walking in, 25
partial retrieval in, 25
replication factor in, 84
service wrapping in, 136
terminology in, 81
transactions in, 84
write tolerance of, 84

Riak Search, 85, 88
rich domain model, 113
rollbacks, automated, 145
routing, 120
rows (RDBMS). See tuples

S
scaffolding code, 126
scaling, 95

horizontal, 149
for reads, 94, 96
for writes, 96

in column-family databases, 107
in document databases, 95
in graph databases, 119
vertical, 8

Scatter-Gather pattern, 67
schemaless databases, 28–30, 148

implicit schema of, 29
schema changes in, 128–132

schemas
backward compatibility of, 126, 131
changing, 128–132
during development, 124, 126
implicit, 29
migrations of, 123–132

search engines, 138
security, 139
servers

maintenance of, 94
processing on, 67

service-oriented architecture, 7
services, 136

and security, 139
decomposing database layer into, 151
decoupling between databases and, 7
over HTTP, 7

sessions
affinity, 52
consistency of, 52, 63
expire keys for, 85
management of, 133
sticky, 52
storing, 57, 87

sharding, 37–38, 40, 149
and performance, 39
and resilience, 39
auto, 39
by customer location, 97
combining with replication, 43
in key-value databases, 86
in MongoDB, 96
in relational databases, 8

shared database integration, 4, 6
shopping carts

expire keys for, 85
inconsistency in, 55
persistence of, 133
storing, 87

shuffling, 70
SimpleDB, 99

inconsistency window of, 50
single server approach, 37–38

consistency of, 53
no partition tolerance in, 54
transactions in, 53
version stamps in, 63

single-threaded event processors, 145
snapshots, 142–143
social networks, 26, 120

relationships between nodes in, 117
Solr indexing engine, 88, 137, 141
split brain situation, 53
SQL (Structured Query Language), 5
SSTables (Cassandra), 103
stale data

in cache, 50
in indexes/search engines, 138
reading, 56

standard column families (Cassandra), 101
sticky sessions, 52
storage models, 13
Strozzi, Carlo, 9
super column families (Cassandra), 101–102
super columns (Cassandra), 101
system transactions, 61

T
tables. See relational databases, relations in
telemetric data from physical devices, 57
Terrastore DB, 91, 94
timestamps

consistent notion of time for, 64
in column-family databases, 100
of last update, 63

163Index

