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Had we not thought that, we wouldn’t have spent the time and effort writing
this book.

This book seeks to give you enough information to answer the question of
whether NoSQL databases are worth serious consideration for your future
projects. Every project is different, and there’s no way we can write a simple de-
cision tree to choose the right data store. Instead, what we are attempting here
is to provide you with enough background on how NoSQL databases work, so
that you can make those judgments yourself without having to trawl the whole
web. We’ve deliberately made this a small book, so you can get this overview
pretty quickly. It won’t answer your questions definitively, but it should
narrow down the range of options you have to consider and help you understand
what questions you need to ask.

Why Are NoSQL Databases Interesting?

We see two primary reasons why people consider using a NoSQL database.

• Application development productivity. A lot of application development
effort is spent on mapping data between in-memory data structures and a
relational database. A NoSQL database may provide a data model that
better fits the application’s needs, thus simplifying that interaction and
resulting in less code to write, debug, and evolve.

• Large-scale data. Organizations are finding it valuable to capture more
data and process it more quickly. They are finding it expensive, if even
possible, to do so with relational databases. The primary reason is that a
relational database is designed to run on a single machine, but it is usually
more economic to run large data and computing loads on clusters of
many smaller and cheaper machines. Many NoSQL databases are designed
explicitly to run on clusters, so they make a better fit for big data scenarios.

What’s in the Book

We’ve broken this book up into two parts. The first part concentrates on core
concepts that we think you need to know in order to judge whether NoSQL
databases are relevant for you and how they differ. In the second part we
concentrate more on implementing systems with NoSQL databases.
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Chapter 1 begins by explaining why NoSQL has had such a rapid rise—the
need to process larger data volumes led to a shift, in large systems, from scaling
vertically to scaling horizontally on clusters. This explains an important feature
of the data model of many NoSQL databases—the explicit storage of a rich
structure of closely related data that is accessed as a unit. In this book we call
this kind of structure an aggregate.

Chapter 2 describes how aggregates manifest themselves in three of the main
data models in NoSQL land: key-value (“Key-Value and Document Data Models,”
p. 20), document (“Key-Value and Document Data Models,” p. 20), and column
family (“Column-Family Stores,” p. 21) databases. Aggregates provide a natural
unit of interaction for many kinds of applications, which both improves running
on a cluster and makes it easier to program the data access. Chapter 3 shifts to
the downside of aggregates—the difficulty of handling relationships
(“Relationships,” p. 25) between entities in different aggregates. This leads us
naturally to graph databases (“Graph Databases,” p. 26), a NoSQL data model
that doesn’t fit into the aggregate-oriented camp. We also look at the common
characteristic of NoSQL databases that operate without a schema (“Schemaless
Databases,” p. 28)—a feature that provides some greater flexibility, but not as
much as you might first think.

Having covered the data-modeling aspect of NoSQL, we move on to distribu-
tion: Chapter 4 describes how databases distribute data to run on clusters.
This breaks down into sharding (“Sharding,” p. 38) and replication, the latter
being either master-slave (“Master-Slave Replication,” p. 40) or peer-to-peer
(“Peer-to-Peer Replication,” p. 42) replication. With the distribution models





Who Should Read This Book

Our target audience for this book is people who are considering using some form
of a NoSQL database. This may be for a new project, or because they are hitting
barriers that are suggesting a shift on an existing project.

Our aim is to give you enough information to know whether NoSQL technol-
ogy makes sense for your needs, and if so which tool to explore in more depth.
Our primary imagined audience is an architect or technical lead, but we think
this book is also valuable for people involved in software management who want
to get an overview of this new technology. We also think that if you’re a devel-
oper who wants an overview of this technology, this book will be a good starting
point.

We don’t go into the details of programming and deploying specific databases
here—we leave that for specialist books. We’ve also been very firm on a page
limit, to keep this book a brief introduction. This is the kind of book we think
you should be able to read on a plane flight: It won’t answer all your questions
but should give you a good set of questions to ask.

If you’ve already delved into the world of NoSQL, this book probably won’t
commit any new items to your store of knowledge. However, it may still be
useful by helping you explain what you’ve learned to others. Making sense of
the issues around NoSQL is important—particularly if you’re trying to persuade
someone to consider using NoSQL in a project.

What Are the Databases

In this book, we’ve followed a common approach of categorizing NoSQL
databases according to their data model. Here is a table of the four data models
and some of the databases that fit each model. This is not a comprehensive list—it
only mentions the more common databases we’ve come across. At the time of
writing, you can find more comprehensive lists at http://nosql-database.org and
http://nosql.mypopescu.com/kb/nosql. For each category, we mark with italics
the database we use as an example in the relevant chapter.

Our goal is to pick a representative tool from each of the categories of the
databases. While we talk about specific examples, most of the discussion should
apply to the entire category, even though these products are unique and cannot
be generalized as such. We will pick one database for each of the key-value,
document, column family, and graph databases; where appropriate, we will
mention other products that may fulfill a specific feature need.

xviiPreface
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Example DatabasesData Model

BerkeleyDBKey-Value (“Key-Value Databases,” p. 81)

LevelDB

Memcached

Project Voldemort

Redis

Riak

CouchDBDocument (“Document Databases,” p. 89)

MongoDB

OrientDB

RavenDB

Terrastore

Amazon SimpleDBColumn-Family (“Column-Family Stores,” p. 99)

Cassandra

HBase

Hypertable

FlockDBGraph (“Graph Databases,” p. 111)

HyperGraphDB

Infinite Graph

Neo4J

OrientDB

This classification by data model is useful, but crude. The lines between the
different data models, such as the distinction between key-value and document
databases (“Key-Value and Document Data Models,” p. 20), are often blurry.
Many databases don’t fit cleanly into categories; for example, OrientDB calls itself
both a document database and a graph database.

Acknowledgments

Our first thanks go to our colleagues at ThoughtWorks, many of whom have
been applying NoSQL to our delivery projects over the last couple of years. Their
experiences have been a primary source both of our motivation in writing this
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Different databases are designed to solve different problems. Using a single
database engine for all of the requirements usually leads to non- performant so-
lutions; storing transactional data, caching session information, traversing graph
of customers and the products their friends bought are essentially different
problems. Even in the RDBMS space, the requirements of an OLAP and OLTP
system are very different—nonetheless, they are often forced into the same schema.

Let’s think of data relationships. RDBMS solutions are good at enforcing that
relationships exist. If we want to discover relationships, or have to find data from
different tables that belong to the same object, then the use of RDBMS starts
being difficult.

Database engines are designed to perform certain operations on certain data
structures and data amounts very well—such as operating on sets of data or
a store and retrieving keys and their values really fast, or storing rich documents
or complex graphs of information.

13.1 Disparate Data Storage Needs

Many enterprises tend to use the same database engine to store business
transactions, session management data, and for other storage needs such as
reporting, BI, data warehousing, or logging information (Figure 13.1).

The session, shopping cart, or order data do not need the same properties of
availability, consistency, or backup requirements. Does session management
storage need the same rigorous backup/recovery strategy as the e-commerce orders
data? Does the session management storage need more availability of an instance
of database engine to write/read session data?

In 2006, Neal Ford coined the term polyglot programming, to express the idea
that applications should be written in a mix of languages to take advantage
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cart data
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orders
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data BI/DW

Figure 13.1 Use of RDBMS for every aspect of storage for the application

of the fact that different languages are suitable for tackling different problems.
Complex applications combine different types of problems, so picking the right
language for each job may be more productive than trying to fit all aspects into
a single language.

Similarly, when working on an e-commerce business problem, using a data
store for the shopping cart which is highly available and can scale is important,
but the same data store cannot help you find products bought by the customers’
friends—which is a totally different question. We use the term polyglot persistence
to define this hybrid approach to persistence.

13.2 Polyglot Data Store Usage

Let’s take our e-commerce example and use the polyglot persistence approach
to see how some of these data stores can be applied (Figure 13.2). A key-value
data store could be used to store the shopping cart data before the order is
confirmed by the customer and also store the session data so that the RDBMS
is not used for this transient data. Key-value stores make sense here since the
shopping cart is usually accessed by user ID and, once confirmed and paid by
the customer, can be saved in the RDBMS. Similarly, session data is keyed
by the session ID.

If we need to recommend products to customers when they place products into
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Figure 13.2 Use of key-value stores to offload session and shopping cart data storage
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Figure 13.3 Example implementation of polyglot persistence

or “your friends bought these accessories for this product”—then introducing a
graph data store in the mix becomes relevant (Figure 13.3).

It is not necessary for the application to use a single data store for all of its
needs, since different databases are built for different purposes and not all
problems can be elegantly solved by a singe database.

Even using specialized relational databases for different purposes, such as data
warehousing appliances or analytics appliances within the same application, can
be viewed as polyglot persistence.

13.2 Polyglot Data Store Usage 135



13.3 Service Usage over Direct Data Store Usage

As we move towards multiple data stores in the application, there may be other
applications in the enterprise that could benefit from the use of our data stores
or the data stored in them. Using our example, the graph data store can serve
data to other applications that need to understand, for example, which products
are being bought by a certain segment of the customer base.

Instead of each application talking independently to the graph database, we
can wrap the graph database into a service so that all relationships between the
nodes can be saved in one place and queried by all the applications (Figure 13.4).
The data ownership and the APIs provided by the service are more useful than
a single application talking to multiple databases.

Friends bought 
these products 

service

Document 
store

e-commerce platform

Key-Value 
store

RDBMS
(Legacy DB) Graph store

Shopping cart 
and session 

data

Completed 
Orders

Inventory
and

Item Price

Customer 
social 
graph

Figure 13.4 Example implementation of wrapping data stores into services

The philosophy of service wrapping can be taken further: You could wrap all
databases into services, letting the application to only talk to a bunch of services
(Figure 13.5). This allows for the databases inside the services to evolve without
you having to change the dependent applications.

Many NoSQL data store products, such as Riak [Riak] and Neo4J [Neo4J],
actually provide out-of-the-box REST API’s.

13.4 Expanding for Better Functionality

Often, we cannot really change the data storage for a specific usage to something
different, because of the existing legacy applications and their dependency on
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Figure 13.5 Using services instead of talking to databases

existing data storage. We can, however, add functionality such as caching for
better performance, or use indexing engines such as Solr [Solr] so that search
can be more efficient (Figure 13.6). When technologies like this are introduced,
we have to make sure data is synchronized between the data storage for the
application and the cache or indexing engine.

RDBMS

e-commerce 
platform

Shopping 
cart data

Completed 
Orders

Session 
data

SOLR



While doing this, we need to update the indexed data as the data in the appli-
cation database changes. The process of updating the data can be real-time or
batch, as long as we ensure that the application can deal with stale data in the





13.8 Key Points

• Polyglot persistence is about using different data storage technologies to
handle varying data storage needs.

• Polyglot persistence can apply across an enterprise or within a single
application.

• Encapsulating data access into services reduces the impact of data storage
choices on other parts of a system.

• Adding more data storage technologies increases complexity in programming
and operations, so the advantages of a good data storage fit need to be
weighed against this complexity.
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