

Sam Newman

978-1-491-95035-7

[LSI]

Building Microservices
by Sam Newman

Copyright € 2015 Sam Newman. All rights reserved.

Printed in the United States of America.

Published by O•Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O•Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Brian MacDonald
Production Editor: Kristen Brown
Copyeditor: Rachel Monaghan
Proofreader: Jasmine Kwityn

Indexer: Judith McConville
Interior Designer: David Futato
Cove0(u) -5
esigner:

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491950357

Table of Contents

1. Splitting the Monolith. 5
It•s All About Seams 5
Breaking Apart Mll 468a1eie1eo 0s6 . 5

Backup Data Pump 25
Toward Real Time 26
Cost of Change 26
Understanding Root Causes 27
Summary 28

CHAPTER 1

Splitting the Monolith

We•ve discussed what a good service looks like, and why smaller servers may be better
for us. We also previously discussed the importance of being able to evolve the design
of our systems. But how do we handle the fact that we may already have a large num‚
ber of codebases lying about that don•t follow these patterns? How do we go about
decomposing these monolithic applications without having to embark on a big-bang
rewrite?

The monolith grows over time. It acquires new functionality and lines of code at an
alarming rate. Before long it becomes a big, scary giant presence in our organization
that people are scared to touch or change. But all is not lost! With the right tools at
our disposal, we can slay this beast.

It’s All About Seams
We discussed in an earlier chapter that we want our services to be highly cohesive and
loosely coupled. The problem with the monolith is that all too often it is the opposite
of both. Rather than tend toward cohesion, and keep things together that tend to
change together, we acquire and stick together all sorts of unrelated code. Likewise,
loose coupling doesn•t really exist: if I want to make a change to a line of code, I may
be able to do that easily enough, but I cannot deploy that change without potentially
impacting much of the rest of the monolith, and I•ll certainly have to redeploy the
entire system.

In his book Working E€ectively with Legacy Code (Prentice-Hall), Michael Feathers
defines the concept of a seamƒthat is, a portion of the code that can be treated in
isolation and worked on without impacting the rest of the codebase. We also want to
identify seams. But rather than finding them for the purpose of cleaning up our code‚
base, we want to identify seams that can become service boundaries.

5

So what makes a good seam? Well, as we discussed previously, bounded contexts
make excellent seams since by definition they represent cohesive and yet loosely cou‚
pled boundaries in an organization. So the first step is to start identifying these
boundaries in our code.

Most programming languages provide namespace concepts that allow us to group
similar code together. Java•s package concept is a fairly weak example, but gives us
much of what we need. All other mainstream programming languages have similar
concepts built in, with JavaScript very arguably being an exception.

Breaking Apart MusicCorp
Imagine we have a large backend monolithic service that represents a substantial
amount of the behavior of MusicCorp•s online systems. To start, we should identify
the high-level bounded contexts that we think exist in our organization, as we dis‚
cussed in ???. Then we want to try to understand what bounded contexts the mono‚
lith maps to. Let•s imagine that initially we identify four contexts we think our
monolithic backend covers:

Catalog
Everything to do with metadata about the items we offer for sale

Finance
Reporting for accounts, payments, refunds, and so on

Warehouse
Dispatching and returning of customer orders, managing inventory levels, and
the like

Recommendation
Our patent-pending, revolutionary recommendation system, which is highly
complex code written by a team with more PhDs than the average science lab

The first thing to do is to create packages representing these contexts, and then move
the existing code into them. With modern IDEs, code movement can be done auto‚
matically via refactorings, and can be done incrementally while we are doing other
things. You•ll still need tests to catch any breakages made by moving code, however,
especially if you•re using a dynamically typed language where the IDEs have a harder
time of performing refactoring. Over time, we start to see what code fits well, and
what code is le• over and doesn•t really fit anywhere. This remaining code will often
identify bounded contexts we might have missed!

During this process we can use code to analyze the dependencies between these pack‚

allow us to see the dependencies between packages graphically. If we spot things that
look wrongƒfor example, the warehouse package depends on code in the finance
package when no such dependency exists in the real organizationƒthen we can
investigate this problem and try to resolve it.

This process could take an afternoon on a small codebase, or several weeks or months
when you•re dealing with millions of lines of code. You may not need to sort all code
into domain-oriented packages before splitting out your first service, and indeed it
can be more valuable to concentrate your effort in one place. There is no need for this
to be a big-bang approach. It is something that can be done bit by bit, day by day, and
we have a lot of tools at our disposal to track our progress.

So now that we have our codebase organized around these seams, what next?

The Reasons to Split the Monolith
Deciding that you•d like a monolithic service or application to be smaller is a good
start. But I would strongly advise you to chip away at these systems. An incremental
approach will help you learn about microservices as you go, and will also limit the
impact of getting something wrong (and you will get things wrong!). Think of our
monolith as a block of marble. We could blow the whole thing up, but that rarely
ends well. It makes much more sense to just chip away at it incrementally.

So if we are going to break apart the monolith a piece at a time, where should we
start? We have our seams now, but which one should we pull out first? It•s best to
think about where you are going to get the most benefit from some part of your code‚
base being separated, rather than just splitting things for the sake of it. Let•s consider
some drivers that might help guide our chisel.

Pace of Change
Perhaps we know that we have a load of changes coming up soon in how we manage
inventory. If we split out the warehouse seam as a service now, we could change that
service faster, as it is a separate autonomous unit.

Team Structure
MusicCorp•s delivery team is actually split across two geographical regions. One team
is in London, the other in Hawaii (some people have it easy!). It would be great if we
could split out the code that the Hawaii team works on the most, so it can take full
ownership. We•ll explore this idea further in ???.

The Reasons to Split the Monolith | 7

Figure 1-1. Splitting out our repository layers

Having the database mapping code colocated inside the code for a given context can
help us understand what parts of the database are used by what bits of code. Hiber‚
nate, for example, can make this very clear if you are using something like a mapping
file per bounded context.

This doesn•t give us the whole story, however. For example, we may be able to tell that
the finance code uses the ledger table, and that the catalog code uses the line item
table, but it might not be clear that the database enforces a foreign key relationship
from the ledger table to the line item table. To see these database-level constraints,
which may be a stumbling block, we need to use another tool to visualize the data. A
great place to start is to use a tool like the freely available SchemaSpy, which can gen‚
erate graphical representations of the relationships between tables.

All this helps you understand the coupling between tables that may span what will
eventually become service boundaries. But how do you cut those ties? And what
about cases where the same tables are used from multiple different bounded contexts?
Handling problems like these is not easy, and there are many answers, but it is doable.

Coming back to some concrete examples, let•s consider our music shop again. We
have identified four bounded contexts, and want to move forward with making them

http://schemaspy.sourceforge.net/

nization so they can see how we•re doing. We want to make the reports nice and easy
to read, so rather than saying, „We sold 400 copies of SKU 12345 and made $1,300,…
we•d like to add more information about what was sold, instead saying, „We sold 400
copies of Bruce Springsteen•s Greatest Hits and made $1,300.… To do this, our report‚
ing code in the finance package will reach into the line item table to pull out the title
for the SKU. It may also have a foreign key constraint from the ledger to the line item
table, as we see in Figure 1-2.

Figure 1-2. Foreign key relationship

So how do we fix things here? Well, we need to make a change in two places. First, we
need to stop the finance code fromreaching into the line item table, as this table really
belongs to the catalog code, and we don•t want database integration happening once
catalog and finance are services in their own rights. The quickest way to address this
is rather than having the code in finance reach into the line item table, we•ll expose
the data via an API call in the catalog package that the finance code can call. This API
call will be the forerunner of a call we will make over the wire, as we see in Figure 1-3.

Figure 1-3. Post removal of the foreign key relationship

10 | Chapter 1: Splitting the Monolith

At this point it becomes clear that we may well end up having to make two database
calls to generate the report. This is correct. And the same thing will happen if these
are two separate services. Typically concerns around performance are now raised. I
have a fairly easy answer to those: how fast does your system need to be? And how
fast is it now? If you can test its current performance and know what good perfor‚
mance looks like, then you should feel confident in making a change. Sometimes
making one thing slower in exchange for other things is the right thing to do, espe‚
cially if slower is still perfectly acceptable.

But what about the foreign key relationship? Well, we lose this altogether. This
becomes a constraint we need to now manage in our resulting services rather than in
the database level. This may mean that we need to implement our own consistency
check across services, or else trigger actions to clean up related data. Whether or not
this is needed is often not a technologist•s choice to make. For example, if our order
service contains a list of IDs for catalog items, what happens if a catalog item is
removed and an order now refers to an invalid catalog ID? Should we allow it? If we
do, then how is this represented in the order when it is displayed? If we don•t, then
how can we check that this isn•t violated? These are questions you•ll need to get
answered by the people who define how your system should behave for its users.

Example: Shared Static Data

Figure 1-4. Country codes in the database

I have seen perhaps as many country codes stored in databases (shown in Figure 1-4)
as I have written StringUtils classes in-house in Java projects. This seems to imply
that we plan to change the countries our system supports way more frequently than
we•ll deploy new code, but whatever the real reason, these examples of shared static
data being stored in databases come up a lot. So what do we do in our music shop if
all our potential services read from the same table like this?

Example: Shared Static Data | 11

Well, we have a few options. One is to duplicate this table for each of our packages,
with the long-term view that it will be duplicated within each service also. This leads
to a potential consistency challenge, of course: what happens if I update one table to
reflect the creation of Newmantopia off the east coast of Australia, but not another?

A second option is to instead treat this shared, static data as code. Perhaps it could be
in a property file deployed as part of the service, or perhaps just as an enumeration.
The problems around the consistency of data remain, although experience has shown
that it is far easier to push out changes to configuration files than alter live database
tables. This is often a very sensible approach.

A third option, which may well be extreme, is to push this static data into a service of
its own right. In a couple of situations I have encountered, the volume, complexity,
and rules associated with the static reference data were sufficient that this approach
was warranted, but it•s probably overkill if we are just talking about country codes!

Personally, in most situations I•d try to push for keeping this data in configuration
files or directly in code, as it is the simple option for most cases.

Example: Shared Data
Now let•s dive into a more complex example, but one that can be a common problem
when you•re trying to tease apart systems; shared mutable data. Our finance code
tracks payments made by customers for their orders, and also tracks refunds given to
them when they return items. Meanwhile, the warehouse code updates records to
show that orders for customers have been dispatched or received. All of this data is
displayed in one convenient place on the website so that customers can see what is
going on with their account. To keep things simple, we have stored all this informa‚
tion in a fairly generic customer record table, as shown in Figure 1-5.

So both the finance and the warehouse code are writing to, and probably occasionally
reading from, the same table. How can we tease this apart? What we actually have
here is something you•ll see oftenƒa domain concept that isn•t modeled in the code,
and is in fact implicitly modeled in the database. Here, the domain concept that is
missing is that of Customer.

Figure 1-6. Recognizing the bounded context of the customer

We need to make the current abstract concept of the customer concrete. As a transi‚
ent step, we create a new package called Customer. We can then use an API to expose
Customer code to other packages, such as finance or warehouse. Rolling this all the
way forward, we may now end up with a distinct customer service.

Example: Shared Tables

Figure 1-7. Tables being shared between di€erent contexts

Figure 1-7 shows our last example. Our catalog needs to store the name and price of
the records we sell, and the warehouse needs to keep an electronic record of inven‚

Example: Shared Tables | 13

tory. We decide to keep these two things in the same place in a generic line item table.
Before, with all the code merged in together, it wasn•t clear that we are actually con‚
flating concerns, but now we can see that in fact we have two separate concepts that
could be stored differently.

Figure 1-8. Pulling apart the shared table

The answer here is to split the table in two as we have in Figure 1-8, perhaps creating
a stock list table for the warehouse, and a catalog entry table for the catalog details.

Figure 1-9. Staging a service separation

With a separate schema, we•ll be potentially increasing the number of database calls
to perform a single action. Where before we might have been able to have all the data
we wanted in a single SELECT statement, now we may need to pull the data back from
two locations and join in memory. Also, we end up breaking transactional integrity
when we move to two schemas, which could have significant impact on our applica‚
tions; we•ll be discussing this next. By splitting the schemas out but keeping the appli‚
cation code together, we give ourselves the ability to revert our changes or continue to
tweak things without impacting any consumers of our service. Once we are satisfied
that the DB separation makes sense, we can then think about splitting out the appli‚
cation code into two services.

Transactional Boundaries
Transactions are useful things. They allow us to say these events either all happen
together, or none of them happen. They are very useful when we•re inserting data into a
database; they let us update multiple tables at once, knowing that if anything fails
everything gets rolled back, ensuring our data doesn•t get into an inconsistent state.
Simply put, a transaction allows us to group together multiple different activities that
take our system from one consistent state to anotherƒeverything works, or nothing
changes.

Transactions don•t just apply to databases, although we most often use them in that
context. Messages brokers, for example, have long allowed you to post and receive
messages within transactions too.

customer order has been created, and also put an entry into a table for the warehouse
team so it knows an order that needs to be picked for dispatch. We•ve gotten as far as
grouping our application code into separate packages, and have also separated the
customer and wharehouse parts of the schema well enough that we are ready to put
them into their own schemas prior to separating the application code.

Within a single transaction in our existing monolithic schema, creating the order and
inserting the record for the warehouse team takes place within a single transaction, as
shown in Figure 1-10.

Figure 1-10. Updating two tables in a single transaction

But if we have pulled apart the schema into two separate schemas, one for customer-
related data including our order table, and another for the warehouse, we have lost
this transactional safety. The order placing process now spans two separate transac‚
tional boundaries, as we see in Figure 1-11. If our insert into the order table fails, we
can clearly stop everything, leaving us in a consistent state. But what happens when
the insert into the order table works, but the insert into the picking table fails?

16 | Chapter 1: Splitting the Monolith

Figure 1-11. Spanning transactional boundaries for a single operation

Try Again Later
The fact that the order was captured and placed might be enough for us, and we may
decide to retry the insertion into the warehouse•s picking table at a later date. We
could queue up this part of the operation in a queue or logfile, and try again later. For
some sorts of operations this makes sense, but we have to assume that a retry would
fix it.

In many ways, this is another form of what is called eventual consistency. Rather than
using a transactional boundary to ensure that the system is in a consistent state when
the transaction completes, instead we accept that the system will get itself into a con‚
sistent state at some point in the future. This approach is especially useful with busi‚
ness operations that might be long-lived. We•ll discuss this idea in more depth in ???
when we cover scaling patterns.

Abort the Entire Operation
Another option is to reject the entire operation. In this case we have to put the system
back into a consistent state. The picking table is easy, as that insert failed, but we have
a committed transaction in the order table. We need to unwind this. What we have to
do is issue a compensating transaction, kicking off a new transaction to wind back
what just happened. For us, that could be something as simple as issuing a DELETE
statement to remove the order from the database. Then we•d also need to report back
via the UI that the operation failed. Our application could handle both aspects within
a monolithic system, but we•d have to consider what we could do when we split up the
application code. Does the logic to handle the compensating transaction live in the
customer service, the order service, or somewhere else?

Transactional Boundaries | 17

rithms are hard to get right, so I•d suggest you avoid trying to create your own.
Instead, do lots of research on this topic if this seems like the route you want to take,
and see if you can use an existing implementation.

So What to Do?
All of these solutions add complexity. As you can see, distributed transactions are
hard to get right and can actually inhibit scaling. Systems that eventually converge
through compensating retry logic can be harder to reason about, and may need other
compensating behavior to fix up inconsistencies in data.

When you encounter business operations that currently occur within a single transac‚
tion, ask yourself if they really need to. Can they happen in different, local transac‚
tions, and rely on the concept of eventual consistency? These systems are much easier
to build and scale (we•ll discuss this more in ???).

If you do encounter state that really, really wants to be kept consistent, do everything
you can to avoid splitting it up in the first place. Try really hard. If you really need to
go ahead with the split, think about moving from a purely technical view of the pro‚
cess (e.g., a database transaction) and actually create a concrete concept to represent
the transaction itself. This gives you a handle, or a hook, on which to run other oper‚
ations like compensating transactions, and a way to monitor and manage these more
complex concepts in your system. For example, you might create the idea of an „in-
process-order… that gives you a natural place to focus all logic around processing the
order end to end (and dealing with exceptions).

Reporting
As we•ve already seen, in splitting a service into smaller parts, we need to also poten‚
tially split up how and where data is stored. This creates a problem, however, when it
comes to one vital and common use case: reporting.

A change in architecture as fundamental as moving to a microservices architecture
will cause a lot of disruption, but it doesn•t mean we have to abandon everything we
do. The audience of our reporting systems are users like any other, and we need to
consider their needs. It would be arrogant to fundamentally change our architecture
and just ask them to adapt. While I•m not suggesting that the space of reporting isn•t
ripe for disruptionƒit certainly isƒthere is value in determining how to work with
existing processes first. Sometimes we have to pick our battles.

The Reporting Database
Reporting typically needs to group together data from across multiple parts of our
organization in order to generate useful output. For example, we might want to

Reporting | 19

enrich the data from our general ledger with descriptions of what was sold, which we
get from a catalog. Or we might want to look at the shopping behavior of specific,
high-value customers, which could require information from their purchase history
and their customer profile.

In a standard, monolithic service architecture, all our data is stored in one big data‚
base. This means all the data is in one place, so reporting across all the information is
actually pretty easy, as we can simply join across the data via SQL queries or the like.
Typically we won•t run these reports on the main database for fear of the load gener‚
ated by our queries impacting the performance of the main system, so often these
reporting systems hang on a read replica as shown in Figure 1-12.

Figure 1-12. Standard read replication

With this approach we have one sizeable upsideƒthat all the data is already in one
place, so we can use fairly straightforward tools to query it. But there are also a couple
of downsides with this approach. First, the schema of the database is now effectively a
shared API between the running monolithic services and any reporting system. So a
change in schema has to be carefully managed. In reality, this is another impediment
that reduces the chances of anyone wanting to take on the task of making and co-
coordinating such a change.

Second, we have limited options as to how the database can be optimized for either
use caseƒbacking the live system or the reporting system. Some databases let us
make optimizations on read replicas to enable faster, more efficient reporting; for
example, MySQL would allow us to run a different backend that doesn•t have the
overhead of managing transactions. However, we cannot structure the data differ‚
ently to make reporting faster if that change in data structure has a bad impact on the
running system. What often happens is that the schema either ends up being great for
one use case and lousy for the other, or else becomes the lowest common denomina‚
tor, great for neither purpose.

Finally, the database options available to us have exploded recently. While standard
relational databases expose SQL query interfaces that work with many reporting
tools, they aren•t always the best option for storing data for our running services.
What if our application data is better modeled as a graph, as in Neo4j? Or what if we•d

20 | Chapter 1: Splitting the Monolith

of all the customers, making a separate call for each one. Not only could this be ineffi‚
cient for the reporting system, it could generate load for the service in question too.

While we could speed up some of the data retrieval by adding cache headers to the

Figure 1-14. Making use of materialized views to form a single monolithic reporting
schema

Here, of course, the complexity of integration is pushed deeper into the schema, and
will rely on capabilities in the database to make such a setup performant. While I
think data pumps in general are a sensible and workable suggestion, I am less con‚
vinced that the complexity of a segmented schema is worthwhile, especially given the
challenges in managing change in the database.

Alternative Destinations
On one project I was involved with, we used a series of data pumps to populate JSON
files in AWS S3, effectively using S3 to masquerade as a giant data mart! This
approach worked very well until we needed to scale our solution, and at the time of
writing we are looking to change these pumps to instead populate a cube that can be
integrated with standard reporting tools like Excel and Tableau.

Event Data Pump
In ???, we touched on the idea of microservices emitting events based on the state
change of entities that they manage. For example, our customer service may emit an
event when a given customer is created, or updated, or deleted. For those microservi‚
ces that expose such event feeds, we have the option of writing our own event sub‚
scriber that pumps data into the reporting database, as shown in Figure 1-15.

24 | Chapter 1: Splitting the Monolith

make Cassandra easy to work with, much of which the company has shared with the
rest of the world via numerous open source projects. Obviously it is very important
that the data Netflix stores is properly backed up. To back up Cassandra data, the
standard approach is to make a copy of the data files that back it and store them
somewhere safe. Netflix stores these files, known as SSTables, in Amazon•s S3 object
store, which provides significant data durability guarantees.

Netflix needs to report across all this data, but given the scale involved this is a non‚
trivial challenge. Its approach is to use Hadoop that uses SSTable backup as the source
of its jobs. In the end Netflix ended up implementing a pipeline capable of processing
large amounts of data using this approach, which it then open sourced as the Aegis‚
thus project. Like data pumps, though, with this pattern we still have a coupling to the

https://github.com/Netflix/aegisthus
https://github.com/Netflix/aegisthus

Summary
We decompose our system by finding seams along which service boundaries can
emerge, and this can be an incremental approach. By getting good at finding these
seams and working to reduce the cost of splitting out services in the first place, we
can continue to grow and evolve our systems to meet whatever requirements come
down the road. As you can see, some of this work can be painstaking. But the very
fact that it can be done incrementally means there is no need to fear this work.

So now we can split our services out, but we•ve introduced some new problems too.
We have many more moving parts to get into production now! So next up we•ll dive
into the world of deployment.

28 | Chapter 1: Splitting the Monolith

	Cover
	Table of Contents
	Chapter 1. Splitting the Monolith
	It’s All About Seams
	Breaking Apart MusicCorp
	The Reasons to Split the Monolith
	Pace of Change
	Team Structure
	Security
	Technology

	Tangled Dependencies
	The Database
	Getting to Grips with the Problem
	Example: Breaking Foreign Key Relationships
	Example: Shared Static Data
	Example: Shared Data
	Example: Shared Tables
	Refactoring Databases
	Staging the Break

	Transactional Boundaries
	Try Again Later
	Abort the Entire Operation
	Distributed Transactions
	So What to Do?

	Reporting
	The Reporting Database
	Data Retrieval via Service Calls
	Data Pumps
	Alternative Destinations

	Event Data Pump
	Backup Data Pump
	Toward Real Time
	Cost of Change
	Understanding Root Causes
	Summary

