Enable javascript in your browser for better experience. Need to know to enable it?

黑料门

Service mesh

本页面中的信息并不完全以您的首选语言展示,我们正在完善其他语言版本。想要以您的首选语言了解相关信息,可以点击这里下载笔顿贵。
更新于 : Apr 24, 2019
不在本期内容中
这一条目不在当前版本的技术雷达中。如果它出现在最近几期中,那么它很有可能仍然具有相关参考价值。如果这一条目出现在更早的雷达中,那么它很有可能已经不再具有相关性,我们的评估将不再适用于当下。很遗憾我们没有足够的带宽来持续评估以往的雷达内容。 了解更多
Apr 2019
试验 ?

Service mesh is an approach to operating a secure, fast and reliable microservices ecosystem. It has been an important stepping stone in making it easier to adopt microservices at scale. It offers discovery, security, tracing, monitoring and failure handling. It provides these cross-functional capabilities without the need for a shared asset such as an API gateway or baking libraries into each service. A typical implementation involves lightweight reverse-proxy processes, aka sidecars, deployed alongside each service process in a separate container. Sidecars intercept the inbound and outbound traffic of each service and provide cross-functional capabilities mentioned above. This approach has relieved the distributed service teams from building and updating the capabilities that the mesh offers as code in their services. This has lead to an even easier adoption of polyglot programming in a microservices ecosystem. Our teams have been successfully using this approach with open source projects such as Istio and we will continue to monitor other open service mesh implementations such as closely.

Nov 2018
评估 ?

As large organizations transition to more autonomous teams owning and operating their own microservices, how can they ensure the necessary consistency and compatibility between those services without relying on a centralized hosting infrastructure? To work together efficiently, even autonomous microservices need to align with some organizational standards. A service mesh offers consistent discovery, security, tracing, monitoring and failure handling without the need for a shared asset such as an API gateway or ESB. A typical implementation involves lightweight reverse-proxy processes deployed alongside each service process, perhaps in a separate container. These proxies communicate with service registries, identity providers, log aggregators and other services. Service interoperability and observability are gained through a shared implementation of this proxy but not a shared runtime instance. We've advocated for a decentralized approach to microservices management for some time and are happy to see this consistent pattern emerge. Open source projects such as and Istio will continue to mature and make service meshes even easier to implement.

May 2018
评估 ?

As large organizations transition to more autonomous teams owning and operating their own microservices, how can they ensure the necessary consistency and compatibility between those services without relying on a centralized hosting infrastructure? To work together efficiently, even autonomous microservices need to align with some organizational standards. A service mesh offers consistent discovery, security, tracing, monitoring and failure handling without the need for a shared asset such as an API gateway or ESB. A typical implementation involves lightweight reverse-proxy processes deployed alongside each service process, perhaps in a separate container. These proxies communicate with service registries, identity providers, log aggregators, and so on. Service interoperability and observability are gained through a shared implementation of this proxy but not a shared runtime instance. We've advocated for a decentralized approach to microservice management for some time and are happy to see this consistent pattern emerge. Open source projects such as and will continue to mature and make service meshes even easier to implement.

Nov 2017
评估 ?

As large organizations transition to more autonomous teams owning and operating their own microservices, how can they ensure the necessary consistency and compatibility between those services without relying on a centralized hosting infrastructure? To work together efficiently, even autonomous microservices need to align with some organizational standards. A service mesh offers consistent discovery, security, tracing, monitoring and failure handling without the need for a shared asset such as an API gateway or ESB. A typical implementation involves lightweight reverse-proxy processes deployed alongside each service process, perhaps in a separate container. These proxies communicate with service registries, identity providers, log aggregators, and so on. Service interoperability and observability are gained through a shared implementation of this proxy but not a shared runtime instance. We've advocated for a decentralized approach to microservice management for some time and are happy to see this consistent pattern emerge. Open source projects such as and will continue to mature and make service meshes even easier to implement.

发布于 : Nov 30, 2017

订阅技术雷达简报

?

立即订阅

查看存档并阅读往期内容