发布于 : Oct 23, 2024
Oct 2024
试验
大语言模型(尝尝惭蝉)在许多应用领域中被证明是有用的,但它们的体积庞大可能会带来一些问题:响应一个提示需要大量计算资源,导致查询速度慢且成本高;这些模型是专有的,体积庞大,必须由第叁方托管在云中,这可能对敏感数据造成问题;而且,在大多数情况下,训练一个模型的费用是非常高的。最后一个问题可以通过RAG 模式来解决,该模式绕过了训练和微调基础模型的需求,但成本和隐私问题往往依然存在。为此,我们现在看到对 小语言模型(厂尝惭蝉) 的兴趣日益增长。与更流行的 LLMs 相比,SLMs 的参数更少、精度较低,通常在 35 亿到 100 亿个参数之间。表明,在适当的上下文中,正确设置时,SLMs 可以执行甚至超越 LLMs。它们的体积也使得在 端侧设备上运行成为可能。我们之前提到过谷歌的 Gemini Nano,但随着微软推出其系列,该领域正在迅速发展。